Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A recent study conducted at the Point Loma wastewater outfall in San Diego used a novel sampling technique, the Pelagic Laser Tomographer (PLT), in combination with traditional water column profiling instruments to analyze suspended particulate distributions and effluent plume dynamics. Coastal wastewater discharges create buoyant plumes that interact with the surrounding water, and the tracking and mapping of the resulting diluted effluent is essential for monitoring outfall system performance. The results from the PLT sampling highlight the utility of high spatial and temporal resolution estimates of suspended particulate size spectra to help capture the dynamics of the plume interactions with the coastal current flow field. In addition, new tools like the PLT can help marine scientists estimate natural and anthropogenic particulate size distributions that are essential to our understanding sediment and pollutant transport, nutrient cycling, and ecosystem energy dynamics.more » « less
-
Kelp beds provide significant ecosystem services and socioeconomic benefits globally, and prominently in coastal zones of the California Current. Their distributions and abundance, however, vary greatly over space and time. Here, we describe long-term patterns of Giant Kelp (Macrocystis pyrifera) sea surface canopy area off the coast of San Diego County from 1983 through 2019 along with recent patterns of water column nitrate (NO3-) exposure inferred fromin situtemperature data in 2014 and 2015 at sites spanning 30 km of the coastline near San Diego California, USA. Site-specific patterns of kelp persistence and resilience were associated with ocean and climate dynamics, with total sea surface kelp canopy area varying approximately 33-fold over the almost 4 decades (min 0.34 km2in 1984; max 11.25 km2in 2008, median 4.79 km2). Site-normalized canopy areas showed that recent kelp persistence since 2014 was greater at Point Loma and La Jolla, the largest kelp beds off California, than at the much smaller kelp bed off Cardiff. NO3-exposure was estimated from an 11-month time series ofin situwater column temperature collected in 2014 and 2015 at 4 kelp beds, using a relationship between temperature and NO3-concentration previously established for the region. The vertical position of the 14.5°C isotherm, an indicator of the main thermocline and nutricline, varied across the entire water column at semidiurnal to seasonal frequencies. We use a novel means of quantifying estimated water column NO3-exposure integrated through time (mol-days m-2) adapted from degree days approaches commonly used to characterize thermal exposures. Water column integrated NO3-exposure binned by quarters of the time series showed strong seasonal differences with highest exposure in Mar - May 2015, lowest exposure in Sep - Dec 2014, with consistently highest exposure off Point Loma. The water column integrated NO3-signal was filtered to provide estimates of the contribution to total nitrate exposure from high frequency variability (ƒ >= 1 cycle 30 hr-1) associated predominantly with internal waves, and low frequency variability driven predominantly by seasonal upwelling. While seasonal upwelling accounted for > 90% of NO3-exposure across the full year, during warm periods when seasonal upwelling was reduced or absent and NO3-exposure was low overall, the proportion due to internal waves increased markedly to 84 to 100% of the site-specific total exposure. The high frequency variability associated with internal waves may supply critical nutrient availability during anomalously warm periods. Overall, these analyses support a hypothesis that differences in NO3-exposure among sites due to seasonal upwelling and higher frequency internal wave forcing contribute to spatial patterns in Giant Kelp persistence in southern California. The study period includes anomalously warm surface conditions and the marine heatwave associated with the “Pacific Warm Blob” superimposed on the seasonal thermal signal and corresponding to the onset of a multi-year decline in kelp canopy area and marked differences in kelp persistence among sites. Our analysis suggests that, particularly during periods of warm surface conditions, variation in NO3-exposure associated with processes occurring at higher frequencies, including internal waves can be a significant source of NO3-exposure to kelp beds in this region. The patterns described here also offer a view of the potential roles of seasonal and higher frequency nutrient dynamics for Giant Kelp persistence in southern California under continuing ocean surface warming and increasing frequency and intensity of marine heatwaves.more » « less
-
Abstract The severity of marine heatwaves (MHWs) that are increasingly impacting ocean ecosystems, including vulnerable coral reefs, has primarily been assessed using remotely sensed sea-surface temperatures (SSTs), without information relevant to heating across ecosystem depths. Here, using a rare combination of SST, high-resolution in-situ temperatures, and sea level anomalies observed over 15 years near Moorea, French Polynesia, we document subsurface MHWs that have been paradoxical in comparison to SST metrics and associated with unexpected coral bleaching across depths. Variations in the depth range and severity of MHWs was driven by mesoscale (10s to 100s of km) eddies that altered sea levels and thermocline depths and decreased (2007, 2017 and 2019) or increased (2012, 2015, 2016) internal-wave cooling. Pronounced eddy-induced reductions in internal waves during early 2019 contributed to a prolonged subsurface MHW and unexpectedly severe coral bleaching, with subsequent mortality offsetting almost a decade of coral recovery. Variability in mesoscale eddy fields, and thus thermocline depths, is expected to increase with climate change, which, along with strengthening and deepening stratification, could increase the occurrence of subsurface MHWs over ecosystems historically insulated from surface ocean heating by the cooling effects of internal waves.more » « less
-
Zhang, Jiahua (Ed.)Abstract As on land, oceans exhibit high temporal and spatial temperature variation. This “ocean weather” contributes to the physiological and ecological processes that ultimately determine the patterns of species distribution and abundance, yet is often unrecognized, especially in tropical oceans. Here, we tested the paradigm of temperature stability in shallow waters (<12.5 m) across different zones of latitude. We collated hundreds of in situ, high temporal-frequency ocean temperature time series globally to produce an intuitive measure of temperature variability, ranging in scale from quarter-diurnal to annual time spans. To estimate organismal sensitivity of ectotherms (i.e. microbes, algae, and animals whose body temperatures depend upon ocean temperature), we computed the corresponding range of biological rates (such as metabolic rate or photosynthesis) for each time span, assuming an exponential relationship. We found that subtropical regions had the broadest temperature ranges at time spans equal to or shorter than a month, while temperate and tropical systems both exhibited narrow (i.e. stable) short-term temperature range estimates. However, temperature-dependent biological rates in tropical regions displayed greater ranges than in temperate systems. Hence, our results suggest that tropical ectotherms may be relatively more sensitive to short-term thermal variability. We also highlight previously unexplained macroecological patterns that may be underpinned by short-term temperature variability.more » « less
-
null (Ed.)Cryptic species that are morphologically similar co-occur because either the rate of competitive exclusion is very slow, or because they are not, in fact, ecologically similar. The processes that maintain cryptic local diversity may, therefore, be particularly subtle and difficult to identify. Here, we uncover differences among several cryptic species in their relative abundance across a depth gradient within a dominant and ecologically important genus of hard coral, Pocillopora. From extensive sampling unbiased towards morphological characters, at multiple depths on the fore reef around the island of Mo’orea, French Polynesia, we genetically identified 673 colonies in the Pocillopora species complex. We identified 14 mitochondrial Open Reading Frame haplotypes (mtORFs, a well-studied and informative species marker used for pocilloporids), which included at least six nominal species, and uncovered differences among haplotypes in their relative abundance at 5, 10, and 20 m at four sites around the island. Differences in relative haplotype abundance across depths were greater than differences among sites separated by several kilometers. The four most abundant species are often visibly indistinguishable at the gross colony level, yet they exhibited stark differences in their associations with light irradiance and daily water temperature variance. The pattern of community composition was associated with frequent cooling in deeper versus shallower water more than warmer temperatures in shallow water. Our results indicate that these cryptic species are not all ecologically similar. The differential abundance of Pocillopora cryptic species across depth should promote their coexistence at the reef scale, as well as promote resilience through response diversity.more » « less
An official website of the United States government
